

Searching for High Redshift Quasars

An Update From DES and Looking Forward to LSST

Sophie Reed (Cambridge -> LSST DM at Princeton) Richard McMahon (Cambridge), Manda Banerji (Cambridge)

Quasar Spectrum at z ~ 7

Above z = 6.5 the Lyman- α has an observed wavelength of 9120 Å and starts to move into the Y waveband

Also need near infrared colours to separate quasars from more numerous galactic cool brown dwarfs

Brown Dwarf Spectrum

Above z = 6.5 the Lyman- α has an observed wavelength of 9120 Å and starts to move into the Y waveband

Also need near infrared colours to separate quasars from more numerous galactic cool brown dwarfs

Colours at z ~ 7

The Dark Energy Survey (DES)

First Light September 2012

Very large area when completed: ~5000 deg²

Deep imaging: 10 σ limits for i and z are AB = 23.4 and AB = 23.2

Sophisticated camera, DECam

DECam

Mosaic of 62 2k by 4k CCDs (0.27" pixels)

Multi waveband imaging: Visible (400 nm) to Near IR (1050 nm), g, r, i, z and Y bands covered

Much more sensitive to red light than SDSS

Credit: DES Collaboration

The VISTA Hemisphere Survey (VHS)

Will cover 10,000 deg² in the infrared when completed

VHS-DES (J and K) overlaps DES and is deeper

VHS-ATLAS (Y, J and K) is a shallower survey

Credit: ESO

The Data Used

Dataset made up of a combination of DES data, VHS data and J band driven unWISE forced photometry

Standard DES DM data used and rereduced DES data using a zY detection image

Selection Method

 χ^2 fit to a range of quasar models with different reddening, models by Paul Hewett.

Also fits a series of brown dwarf models. (Skrzypek et al 2014)

Filters are a parameter so can also be used on any survey, overlapping IR data is very useful!

9

Selection Method

z > 6 Selection

Now > 20 new z > 6 quasars discovered along with the recovery of lots of known SDSS and PS quasars.

11

z ~ 7 Selection

Three new quasars with z > 6.7

~25 new quasars at 6.0 < z < 7.0 and recovery of lots of already know ones from a combination of DES, VHS and WISE photometry.

No photometric follow-up required and very high success percentage, > 90%

Method can be used to select quasars without relying on colour cuts - can find more unusual objects.

To The Future!

LSST will be awesome and not just because they pay me

Image Credit: Y. Beletsky, ESO / Todd Mason, Mason Productions, Inc. / LSST Corporation / P. Marenfeld/NOAO/AUR A/NSF

LSST

Has the required area, depth and red sensitivity for HZQ searches

Overlaps with IR data - VHS (JHK), Euclid (15,000 sq deg in YJH, split over north and south)

IR depth will be the limiting factor

Credit: @LSST

Improved Data Reduction

Improved outlier rejection dramatically cuts down on junk in the catalogues

Detections in every band better for dropouts

Credit: Yusra AlSayyad

Expected Numbers (15,000 sq deg)

17

Proven method from DES easily adaptable to LSST (and any other survey)

Known quasars in the footprint for testing new methods

Eventually there will be lots of overlapping IR data (VHS, Euclid, WFIRST) but not too much K band and non uniform.

Should find many new quasars and have the area and depth to push to $z \sim 8$.